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The advancement of renewable energy infrastructure in smart buildings (e.g., photovoltaic) has highlighted
the importance of energy self-consumption by energy-demanding IoT-enabled devices (e.g., heating/cooling,
electromobility, appliances), which refers to the process of intelligently consuming energy at the time it is
available. This stabilizes the energy grid, minimizes energy dissipation on power lines but more importantly
is good for the environment as energy from fossil sources with a high CO2 footprint is minimized. On the
other hand, user comfort levels expressed in the form of Rule Automation Workflows (RAW), are usually not
aligned with renewable production patterns. In this work, we propose an innovative framework, coined IoT
Meta-Control Firewall (IMCF+), which aims to bridge this gap and balance the trade-off between comfort,
energy consumption and CO2 emissions. The IMCF+ framework incorporates an innovative Green Planner (GP)
algorithm, which is an AI-inspired algorithm that schedules energy consumption with a variety of amortization
strategies. We have implemented IMCF+ and GP as part of a complete IoT ecosystem in openHAB and our
extensive evaluation shows that we achieve a CO2 reduction of 45%-59% to satisfy the comfort of a variety of
user groups with only a moderate ≈3% in reducing their comfort levels.
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1 INTRODUCTION

The Paris Agreement within the United Nations Framework Convention on Climate Change,
dealing with greenhouse-gas-emissions mitigation, adaptation, and finance, signed in New York
City, on April 22, 2016, aimed to strengthen the global response to the threat of climate change,
since we are witnessing a steady increase in CO2 since the Industrial Revolution (1760 – 1840 AD).
Additionally, the cost of polluting, regarding power generation, has increased more than 140% in
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Table 1. The European Environment Agency CO2 emission intensity for EU-27 and USA-average.

COUNTRY kg CO2 per kWh
Sweden 0.013
Lithuania 0.018
France 0.059
Austria 0.085
Latvia 0.105
Finland 0.113
Slovakia 0.132
Denmark 0.166
Belgium 0.17
Croatia 0.21
Luxembourg 0.219
Slovenia 0.254
Italy 0.256
Hungary 0.26
Spain 0.265

COUNTRY kg CO2 per kWh
Romania 0.306
Portugal 0.325
Ireland 0.425
Germany 0.441
Bulgaria 0.47
Netherlands 0.505
Czech Republic 0.513
Greece 0.623
Malta 0.648
Cyprus 0.677
Poland 0.773
Estonia 0.819

COUNTRY kg CO2 per kWh
EU-27 (average) 0.296
USA (average) 0.449

20211 after a stricter environmental agenda in Europe was laid out, along with a sweeping rally in
natural gas prices. Besides all that, natural gas will only reduce 1/3 of the terrible emission image.

In the long-term, high carbon prices could accelerate the investment in equipment, developing
intelligent software to decrease the level of emissions, or switch to cleaner fuels. Technologies
such as Green Hydrogen production from renewable energy or carbon capture and storage, become
more economically viable in case that the carbon price remains at or above current levels. By 2030,
the European’s ambition is to produce 10 million tones of renewable hydrogen that is expected to
significantly reduce the CO2 emissions [1]. When the energy used to power electrolysis comes from
renewable sources it is called Green Hydrogen, and this approach can be effectively used as a future
step mainly anticipated to replace humongous mobile batteries (in airplanes, ships, large lorries, etc.).

On the other hand, self-consumption of renewable energy remains complementary to nowadays and
future requirement for a cleaner environment. Particularly, it constitutes a distributed in-situ approach
that doesn’t require enormous infrastructure but rather only intelligent planning algorithms for the
CO2 reduction and is shown to achieve more than 70% for a domestic household. Consequently,
minimizing the CO2 pollution in spaces where the human is active (e.g., houses, offices, etc.) in
which people spend 80-90% of their time, can positively impact the environment.

Given that energy is produced in a variety of manners (fossil, renewable, nuclear, etc.), the
impact on the environment is typically measured in kg CO2 emitted per kWh of energy produced 2.
In countries with a high kg CO2 per kWh factor, this effectively reduces CO2 pollution but also
contributes to the stabilization of the energy grid. In Table 1, we can see the CO2 emissions due to
electricity generation supplied by the European Environment Agency (Eurostat). The CO2 emission
intensity (kg CO2) is calculated as the ratio of CO2 emissions from public electricity production (as a
share of CO2 emissions from public electricity and heat production related to electricity production),
and gross electricity production. On average, we see that most countries have still a long way for
becoming CO2 neutral and that this is an exciting problem space to seek for novel contributions.
In Table 2, we can see the CO2 emissions produced by return flights according to figures from the
German nonprofit organization “Atmosfair” [2]. The figures are averages considering which aircraft
models are typically used on flight routes, and the estimated occupancy of seats on board those
planes.

1Bloomberg Green., URL: https://tinyurl.com/yxewwpzm
2For the remainder of this work, we denote the more typical metric of kg CO2-eq(uivalent) with only kg CO2.
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Table 2. The carbon dioxide (CO2) emissions produced by return flights according to "Atmosfair" [2].

Flying From Flying To kg CO2

Paris Frankfurt 115
Frankfurt London 138
Sydney Melbourne 165
London Rome 234
New York City Paris 922
London New York City 986
Moscow Washington D.C. 1,383
Los Angeles London 1,650
Brussels Rio de Janeiro 1,756
Athens Brasilia 1,783
Barcelona Shanghai 1,844
Perth Athens 2,530
London Perth 3,153

A key driver for the control of CO2 is the uptake of Internet of Things (IoT), which connect all
the smart devices in the world that can “see”, “hear”, “think”, “react”, perform tasks as well as
communicate with each other using open protocols [3–6], and thus, power consumption and CO2
emissions controlled by IoT infrastructure can be brought under the same roof. IoT enables the
development of smart applications in important domains, such as transportation, healthcare, industrial
automation, emergency response and business, having significant impact on the quality of people’s
life and the growth of the world’s economy and security [5]. Studies showed that IoT connected
devices worldwide is projected to amount to 30.9 billion units by 20253, including smart cars, home
devices, industrial equipment, etc., and later on to 100 billion connected devices by 2030 [7].

In our previous works [8, 9], we presented the design and preliminary results of an innovative
system, coined IoT Meta-Control Firewall (IMCF), which aims to schedule comfort preferences of
user in smart buildings (expressed in the form of so-called Rule Automation Workflows - RAW),
such that long term energy objectives can be meet (e.g., consume less than 400 kWh in December).
We presented the Energy Planner (EP) algorithm that takes care of the scheduling using primitive
amortization strategies. Our previous work was however unfortunately agnostic of the climate impact
of the RAW automation process. In this work we present the IoT Meta-Control Firewall (IMCF+)
framework, which is inspired by the advancement of renewable energy infrastructure in smart
buildings (e.g., photovoltaic) that has highlighted the importance of energy self-consumption by
energy-demanding IoT-enabled devices (e.g., heating/cooling, electromobility, appliances). Self-
consumption refers to the process of intelligently consuming energy at the time it is available. This
stabilizes the energy grid, minimizes energy dissipation on power lines but more importantly is good
for the environment as energy from fossil sources with a high CO2 footprint is minimized.

Particularly, in IMCF+ a user (or group of users) start out by defining a vector of RAW rules,
coined 𝑀𝑅𝑇 , and an Energy Consumption Profile, coined 𝐸𝐶𝑃 (see Fig. 1). The high-level objective
is to identify among all MRT rules the ones that must be dropped so that the user stays within the
desired energy budget according to the ECP history. For this purpose, it utilizes an intelligent search
algorithm, which goes over the exponentially large search space of

∑
𝑟 ≤𝑛 𝑟 -combinations (where

𝑛 = |𝑀𝑅𝑇 |), quickly yielding the rules to be dropped. Particularly, IMCF+ adopts an intelligent
energy amortization process along with an AI-inspired Green-Planner (GP) algorithm we propose,
to balance the trade-off between user comfort and CO2 emissions subject to pre-specified energy
consumption budget while satisfying the RAW pipelines of users. IMCF+ adapts the RAW pipelines
in a way that these don’t collide with the long-term objectives of users (by dropping certain rules
based on preference priority).

3Statista., URL: https://tinyurl.com/mw74ku2h
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Fig. 1. The Green Planner (GP) algorithm proposed in this work is an AI-inspired algorithm that finds
the best possible energy consumption strategy with respect to user comfort and CO2 emissions by
only using a Meta-Rule-Table (MRT) profile, a Weather Forecast and an Energy Consumption Profile
(ECP) and without the necessity of a learning history used by machine learning methods.

The RAW pipelines are distinguished in our discussion into the comfort rules and necessity rules.
The comfort rules aim at promoting an individual’s physical convenience (e.g., room temperature,
ambient lighting, pre-heating of car, operation readiness of general appliances or whatever is consid-
ered tentative comfort to an individual), while the necessity rules are those rules that should always
be executed regardless of whether the long-term target is met. For ease of exposition, consider only
the comfort rules, sorted in order of importance, for the remainder of this work.

In respect to processing the RAW rules, one could ignore the RAW rules completely, obtaining in
this way the best energy consumption (thus, low CO2 emission) but the worst comfort (we call this
the No Rule (NR) method–see Fig. 1). In contrast, a user could obtain maximum comfort by having
every single preference rule inside RAW executed that would obviously bring the highest comfort
but at the same time also consume the highest amount of energy and consequently produce high CO2
emissions (we call this the Meta-Rule (MR) method). We assume that a user sets, for example, the
temperature/illumination to his/her most preferable level, for his/her maximum comfort. The IFTTT
approach, in the absence of a detailed user preference profile MRT, being an arbitrary sequence of
rule executions would then be somewhere in between these two borderline cases, while GP is a more
well-rounded version of arbitrary IFTTT rules.

We claim that by consuming energy more intelligently (i.e., green-smart IoT actuations) can greatly
contribute to the environmental impact of ICT enabling us to improve living conditions and respect the
environment reaching agreed targets. We assume that IMCF+ can be adopted in smart environments
equipped with net-metering or net-billing PV or wind systems where self-consumption translates to
an actuation in the physical space. Having different PV system sizes, means different production
patterns. Thus, the historical user data incorporated in the algorithm and problem formulation will
be proportional to the PV system. This also results to the proportional allocation and distribution
regarding hourly upper bounds and energy consumption accordingly. To understand this desideratum,
consider two separate examples in a green-home and green-dormitory setting, respectively:
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Green-Home: As a first example consider a single family that has invested in photovoltaic technology
to cover its heating/cooling, mobility and other energy requirements. In our scenario, the family has
a yearly budget of 8500 kWh (i.e., yearly production of this household under a net-metering scheme,
where energy excess on a sunny day can be used at later stages within a yearly cycle) and aims to
spend this energy budget through a RAW that configures the energy consumption preferences of
the family (e.g., room temperatures across the year in the house as well as auxiliary lighting, etc.).
The family is willing to adapt its desired interior temperature preferences (e.g., adapting indoor
temperature by 1°C, somebody can save 6% of its energy consumption4) according to production
and consumption patterns but has no clue how the RAW pipelines contribute to the target of using
only 8500 kWh per year. Currently, they rely on manual guess-work and manual planning that is
cumbersome and error-prone [10]. Section 2 overviews the related work extensively, showing that no
other solution is available to the problem under investigation.

Green-Dorms: As a second example consider the SAVES [11] project, which was an inter-dormitory
energy-saving competition within the framework of the European Commission Intelligent Energy
– Europe (IEE) program that took place between 2014-2016. The project aimed to achieve energy-
saving habits by students at a key moment of change in their lives so that they can continue energy-
saving actions throughout their private lives. SAVES aimed at delivering 8% average electricity
savings in participating dormitories. In the case of University of Cyprus students, the task was
undertaken with great excitement and passion that eventually led to a saving of only 4,44%. Even
though students applied common sense and perseverance in achieving the energy reduction target,
there was a lack of intelligent control to reach the higher desired target.

We expose how we have integrated IMCF+ into the readily available openHAB IoT stack bringing
in this way optimal integration and compatibility prospects (as the complete IoT ecosystem bindings
are already readily available). In this paper, we have the following contributions:

• We propose a novel notion of filtering RAW workflows using the IMCF+ firewall that is
formally defined. In this scope, we propose the design and implementation of the Green Plan
algorithm that has the ability to handle the user’s comfort profile by considering the user’s
energy budget and the carbon dioxide emissions;
• We present a complete system architecture of our IMCF+ green energy management system

implemented inside the openHAB stack.
• We evaluate our design with extensive experimentation on real datasets with weather forecast

data from OpenWeatherMap, and measurements from a real residential apartment that com-
prises of a variety of sensors and approximately 5M readings (1.09 GB in total), showing that
GP can be premise for energy-aware and CO2-aware green actuations in the future. We finally
also demonstrate the utility of our pioneer system.

The remaining of the article is organized as follows: Section 2 presents the background and
other related work. Section 3 provides our system model and formulates the problem. Section 4
presents our proposed framework and its internal components. Section 5 presents our complete
system architecture proposition while Section 6 presents our experimental methodology and results.
Section 7 concludes the article.

2 BACKGROUND AND RELATED WORK
In this section, we provide background on the studied subject of IoT rule automation workflows and
also provide the related work.

4U.S. Dept. of Energy. http://tiny.cc/qbosuz
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2.1 IoT Data Management
The uptake of IoT in recent years has brought a revived interest on data management and data
engineering solutions, architectures and applications with a focus on data ingestion [12], analytic
architectures for streaming data [13] as well as relevant benchmarking [14]. From the application
perspective, a specific focus has been given to privacy [15], context awareness [16], temporal
analytics [17], localization [18, 19] and telco big data [20]. Green Data Management has been
a complementary and related topic with intensive research over the years, particularly in data
centers [21–25] and data warehouse design [26, 27], green-aware route planning in GIS systems [28–
31], smart grids [32–36], but the focus on green IoT actuation application frameworks has been
overlooked over the years.

2.2 Rule Automation Workflows (RAW)
In this subsection we cover complementary work of RAW pipelines and the competing approaches
to achieve the exploration of the RAW search space.

Preamble: Beside data collection, many IoT devices also enable the execution of Rule Automation
Workflows (RAW), which span from simple predicate statements to procedural workflows aiming
to capture a smart actuation pipeline in tools like IFTTT [37], which controls Philips Hue lights,
BMW i3 EVs or Daikin A/C units [38] [39], Apilio.io, or Apple Automation [40]. RAW aim to
meet the convenience level of users under specific conditions (e.g., “warm house to 22°C if cold or
preheat EV when approaching”). In the simplest case, a user expresses preferences manually through
a vendor-specific smartphone app or an integrated app. This process requires attention by custodians,
exposing distraction hazards, calling for more automated (i.e., “smarter”) approaches.

One of the most straightforward approaches to achieve a smarter RAW is to do so with the so-
called trigger-action model. Users control the behavior of an IoT by specifying triggers (e.g., “if it
is sunny outside”) and their resultant actions (e.g., “turn off the lights”). Because of its conceptual
simplicity, the trigger-action model has attracted significant attention with IFTTT [37] (“If This Then
That”) becoming one of the first large-scale deployments. Services like Apilio [41] expanded the
expressiveness of the RAW with Boolean predicates (e.g., conjunctions) and Apple Automation [40]
even introduced procedural programming constructs, like variables, while loops, if statements and
functions to bring RAW smart actuations to new levels.

Real-time IFTTT: Heo et al. [42] implemented RT-IFTTT, a real-time IoT language and its frame-
work that uses trigger condition-aware flexible sensor polling intervals. The RT-IFTTT language
extends the existing IFTTT syntax and allows users to specify real-time constraints for their applets.
Again, this system doesn’t enable long term energy planning and it doesn’t also allow green planning.

RAW Informed Search Methods: are generally characterized by a utility in scanning the solution
space to reach a goal. These algorithms utilize an evaluation function that greedily assesses some
distance of the current state to the target state (e.g., in the case of Best-first search) and the least cost
incurred to reach the current state (e.g., in the case of A* heuristic search). Unfortunately, A*-search
always requires some evaluation function that is not available in our case as we really do not know
the comfort target of a user within the agreed energy budget. As such, we must rely on stochastic
informed search algorithms (e.g., simulated annealing and hill climbing), which probabilistically
carry out a similar task but without requiring a rigid target function. The GP algorithm proposed in
this work, is founded on simulated annealing space exploration method that deploys a user-controlled
energy amortization strategy and domain heuristics to bring forward the expected result.
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RAW Machine Learning and Privacy: Another important point is that the GP algorithm doesn’t de-
ploy Machine Learning (ML) techniques, such as Artificial Neural Networks (ANNs) or variants [43],
given that these methods require a lot of training data that is not available in our case due to privacy
reasons. Training data for user habits and preferences can be privacy-sensitive. We feel that this
can pose a serious imminent privacy threat, given that smart-environment controllers like IMCF are
many times private enterprises that are less controlled, thus they might be tempted to exploit the “big”
behavior data of their customers, by either selling it to advertising companies or by linking it to other
sensitive data.

In summary, none of the above RAW technologies enables individuals or group of users to express
their comfort preferences while achieving some long-term energy objective while curbing emissions.

2.3 Smart Energy Management Systems
In this subsection we overview energy management systems for three different contexts, stemming
both from the industrial and academic sectors.

Photovoltaic Home Energy Management: The Sunny Home Manager [44] (HM) controllers by
SMA monitors power flows, particularly the production of AC power from the inverters and the
consumption of AC power from the households (recorded by an energy meter). HM then manages
the power consumption workloads accordingly (e.g., when to operate a washing machine or smart
car charger so that solar energy self-consumption is optimized). This is achieved with its open Simple
Energy Management Protocol (SEMP) or the industry-wide adopted EEBUS [45] protocols with its
KEO reference implementation. However, these protocols are geared for load management inside
smart buildings rather than for enabling users achieve some long-term energy (energy consumption)
targets and restricting CO2 emissions as we do in our work. As such, these energy home managers
have a complementary role to the energy planning propositions we present in this paper.

Smart Thermostats: The Nest.com Learning Thermostat is a programmable and self-learning Wi-
Fi-enabled thermostat that optimizes cooling and heating to conserve energy. However, there are
the following differences with IMCF+: (i) these thermostats do not enable the adaptation of comfort
preferences to meet the long-term energy planning targets of individuals or group of individuals (see
examples in Section 1) considering at the same time the carbon dioxide emissions; and (ii) these
require learning data from users (e.g., location) that might be a privacy concern.

Smart Homes Energy Predictions: There is general research in the sphere of energy prediction of
smart homes. Particularly, in [46] the authors predict user behaviors and designed a protection method
to avoid privacy threads. Yang et al. [47] proposed an intelligent smart home energy management
scheme which supports context-aware service that allows users to do customized configurations
and offers energy usage modes, like general mode, power-saving mode and economic mode to save
the energy efficiently. The work in [48] describes an ongoing attempt in creating a smart IoT desk
that can improve the occupant’s satisfaction with the environment, their health and productivity by
personalizing the environment based on their monitored preferences.

Smart zoning: The approach to dynamically regulate the set points of thermostats in every room at
different levels according to geometry, orientation and interaction among rooms caused by occupancy
patterns, refers to smart zoning. The research conducted in [49, 50], frames the problem of load
management with smart zoning into a multiple-mode feedback-based optimal control problem, which
refers to embedding multiple behaviors (triggered by building-occupant dynamic interaction) into the
optimization problem, with closed-loop control strategies using information stemming from building
and weather states. The authors’ framework makes it is possible to save more than 15% energy
consumption, with 25% increased thermal comfort.
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Table 3. Notation used throughout this work

Notation Description
𝑗 , 𝐷 , 𝑒 𝑗 IoT device 𝑗 , Set of all 𝑗 , energy consumption of 𝑗
𝛾 , Γ𝑗 CO2 emission intensity per country, CO2 emission of device 𝑗

𝑀𝑅
𝑗

𝑖
, 𝑀𝑅𝑇 , 𝑁 Meta-Rule 𝑖 for 𝑗 , Set of all 𝑀𝑅

𝑗

𝑖
, 𝑁 = |𝑀𝑅 |

𝐼 , 𝐼
𝑗

𝑖
Input data, attribute value of input data

𝑂,𝑂
𝑗

𝑖
Output data, attribute value of output

𝑝, 𝑡 Execution Period, time granularity
𝐸𝐶𝑃 Energy Consumption Profile

3 SYSTEM MODEL & PROBLEM FORMULATION
This section formalizes our system model, assumptions and problem. To exemplify our terminology,
we use examples from a smart green-home setting. Table 3 summarizes our notation.

3.1 System Model
Consider a smart green-home composed of 𝐷 IoT devices (e.g., Daikin A/C split units) monitored
by a cloud-based, vendor-specific controller Service (e.g., Daikin Cloud Service) for defining their
behavior based on a particular context (e.g., temperature, humidity). The IoT devices 𝑗 consume
𝑒 𝑗 energy each time they operate under a particular mode of operation. For example, a split unit
consumes around 𝑒 𝑗 = 833 watts (i.e., 0.833 kWh) when started but on average not more than 𝑒 𝑗 = 318
watts (i.e., 0.318 kWh), which according to Table 1 for the European Union with an emission intensity
𝛾 = 0.296 kg CO2 / kWh, it produces about Γ = 𝑒 𝑗 × 𝛾 = 0.95 kg CO2 emissions, on average. We
assume, however, that the smart green-home is equipped with a net-metering photovoltaic system
that allows the resident to consume the generated energy in the house, and request energy from the
grid (and therefore produce CO2 emissions) only when no energy is generated from the photovoltaic
system (i.e., when there is no sunlight).

We also assume that a user has identified a set of meta-rules 𝑀𝑅
𝑗

𝑖
for each device 𝑗 = 1, . . . , 𝐷,

which is recorded with a Meta-Service, such as the IMCF+ service we propose in this work. Particu-
larly, all meta-rules are stored centrally on a meta-rule table 𝑀𝑅𝑇 = {𝑀𝑅

𝑗

𝑖
|𝑖 ≥ 0}, and Meta-Service

takes care to periodically, i.e., every 𝑡 time steps in an overall execution period 𝑝, execute these
rules on the IoT devices through Service. Each meta-rule 𝑀𝑅

𝑗

𝑖
obviously relies on a particular input

context (e.g., temperature from weather channel, or indoor temperature of the A/C split unit, or
outdoor temperature of the split unit fan, or user location, to name a few examples) and we will coin
these 𝐼 𝑗

𝑖
. The 𝑀𝑅

𝑗

𝑖
rule execution generates at every discrete time point an output 𝑂 𝑗

𝑖
, which defines

the action to be executed on device 𝑗 .
Table 4 exemplifies some 𝑀𝑅

𝑗

𝑖
∈ 𝑀𝑅𝑇 that satisfy a user’s preference rules along with the long-

term objective. For example, the constraint states “Keep my monthly CO2 emission below 118 kg”,
which is approximately ≈100 euros or ≈400 kWh (e.g., 1 kWh costs around 0.296 kg CO2 in EU-27
and around 0.449 kg CO2 in USA - see Table 1 - so energy conversion to CO2 emission is carried out
directly). The incorporation of multiple rules may cause several deficiencies, such as rules competing
or throwing a clash with each other, rules becoming infeasible to be satisfied and/or rules that their
behavior depends on the output of other rules. This is mainly due to the inability of current controllers
to autonomously track and monitor a high number of rules that may be set by the user in different
periods, under different circumstances.
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Table 4. The Meta-Rules Table 𝑀𝑅𝑇

Meta-rule Description Input Values Output Values
𝑀𝑅1

1 : If outdoor temp. > 35◦𝐶 𝐼 11 ∈ ℜ 𝑂1
1 ∈ {0, 1}

then switch-on AC in room
𝑀𝑅1

2 : If summer then set AC 𝐼 12 ∈ {0, 1} 𝑂1
2 ∈ ℜ

in room at 20◦𝐶
𝑀𝑅2

3 : If daytime turn lights off 𝐼 23 ∈ ℜ 𝑂2
3 ∈ {0, 1}

𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 : My monthly CO2 𝐼2 = 𝑂2 =
emission to NOT exceed 118kg 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 () {𝑂1

1, ...,𝑂
𝑀
𝑁
}

(i.e., ≈ 400kWh)

3.2 Research Goal

Design an intelligent algorithm that enables some user to find an energy-efficient plan for the
execution of a set of actuation rules encoded in 𝑀𝑅𝑇 and a tentative energy consumption history
𝐸𝐶𝑃 , satisfying several objectives subject to a specific CO2 emission constraint.

The efficiency of the proposed techniques to achieve the above research goal is measured by
the following metrics: (i) the Comfort Error; (ii) the Energy Consumption required for finding a
near-optimal plan of meta-rules and (iii) CO2 Emission required to execute the research goal.

Definition 3.2.1. Comfort Error𝐶𝐸 𝑗 (𝑀𝑅𝑖 ) is the difference between the desired output value Ω 𝑗

𝑖
∈ ℜ

of a rule set by a user and the actual value 𝑂 𝑗

𝑖
∈ ℜ set by the controller, given by: 𝑐𝑒 = |Ω 𝑗

𝑖
| − |𝑂 𝑗

𝑖
|.

The comfort can be defined individually by rules related to temperature, humidity, and illumination
or a combination of those. Please note that this research study has adopted particular smart sensors
for the sake of experimentation, however, the proposed framework can easily adopt any kind of smart
sensor, which corresponds to comfort, with minor modifications.

Definition 3.2.2. Energy Consumption 𝐸 𝑗 (𝑀𝑅𝑖 ) is the energy consumption of device 𝑗 given the
action defined by output 𝑂 𝑗

𝑖
of meta-rule 𝑀𝑅𝑖 , given by:

𝐸 𝑗 =

{
𝑒 𝑗 , if 𝑂 𝑗

𝑖
is executed

0, otherwise
,

where 𝑒 𝑗 is the energy cost of device 𝑗 for meta-rule 𝑀𝑅𝑖 .

Definition 3.2.3. CO2 Emission Γ𝑗 (𝐸 𝑗 , 𝛾) is the CO2 emission produced by the actuation of device
𝑗 given the energy consumption 𝐸 𝑗 as well as the CO2 emission intensity 𝛾 of a particular country,
given by:

Γ𝑗 =

{
𝐸 𝑗 × 𝛾, if device 𝑗 operates
0, otherwise

,

where 𝐸 𝑗 is given by Definition 3.2.

Both the comfort 𝑐𝑒 𝑗 (𝑀𝑅𝑖 ), the energy consumption 𝐸 𝑗 (𝑀𝑅𝑖 ) and the CO2 emission Γ𝑗 (𝐸 𝑗 , 𝛾)
functions, are repeated every 𝑡 seconds (e.g., hourly, daily, monthly, yearly preference) over a time
period 𝑝 (i.e., the complete duration of the execution). Our research goal can be expressed as follows:

min 𝐹𝐶𝐸 =

𝑡∑
𝑘=1
( 1
𝑁

𝑁∑
𝑖=1

𝐷∑
𝑗=1

𝐶𝐸 𝑗 (𝑀𝑅𝑖 )) (1)
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subject to 𝐹𝐸 ≤ 𝐸𝑝 , and 𝐹Γ ≤ Γ𝑝 where:

𝐹𝐸 =

𝑡∑
𝑘=1
( 1
𝑁

𝑁∑
𝑖=1

𝐷∑
𝑗=1

𝐸 𝑗 (𝑀𝑅𝑖 )), (2)

𝐸𝑝 is total available energy budget for the complete period 𝑝 during which the execution of our
algorithm takes place,

𝐹Γ =

𝑡∑
𝑘=1
( 1
𝑁

𝑁∑
𝑖=1

𝐷∑
𝑗=1

Γ𝑗 (𝐸 𝑗 (𝑀𝑅𝑖 , 𝛾))) (3)

and Γ𝑝 is the maximum desired CO2 emission for the complete period 𝑝 during which the execution
of our algorithm takes place.

3.3 Baseline Approaches
There are two extreme scenarios that can be considered as the baselines for our proposition, the one
guaranteeing minimum CO2 emission and maximum comfort error, and the other minimum comfort
error and maximum CO2 emission. No-rule (NR): takes into consideration no rules and therefore
it does not modify the behavior of the autonomous devices. This conflicts with the user’s comfort
level. Consequently, the energy consumption and consequently the CO2 emission of this approach
is minimum and the comfort error is maximum. Meta-rule (MR): is a greedy approach that ignores
the CO2 emission and triggers all actions for satisfying all meta-rules set by the user. Consequently,
the energy consumption and consequently the CO2 emission of this approach is maximum and the
comfort error is minimum.

4 THE IOT META-CONTROL FIREWALL (IMCF+)
In this section, we detail the internal phases of the IoT Meta-Control Firewall (𝐼𝑀𝐶𝐹+) framework,
followed by an example of its operation and analysis.

4.1 Outline of operation
The 𝐼𝑀𝐶𝐹+ framework (presented in Algorithm 1) is composed of two subroutines: (i) the Amor-
tization Plan (AP); and (ii) the Green Plan (GP). The combination of the two, forms the energy
management process, and the operation of each is described in the following subsections. The amor-
tization plan is responsible for calculating the maximum energy budget constraint (coined 𝐸𝑝 ) and
the CO2 emission constraint (𝐹Γ) through a pre-selected amortization formula. Then an AI approach
is executed for generating a green plan solution 𝑠∗ for optimizing the comfort error 𝐹𝐶𝐸 (𝑠∗) subject
to satisfying the 𝐹𝐸 (𝑠∗) ≤ 𝐸𝑝 and 𝐹Γ (𝑠∗) ≤ Γ𝑝 constraints. In this paper, we have adopted a simulated
annealing heuristic, which does not require a learning history (like respective Machine Learning
techniques), doesn’t require a target function (e.g., like A*), it does not get stuck in local optima (e.g.,
like traditional hill-climbing) and it is straightforward to be implemented in a resource-constraint
setting like local smart controllers (e.g., Raspberry).

In our research study, the real monthly consumption patterns indicated on Table 5 are considered as
the maximum energy consumption of a household per month within a year. This max monthly energy
is then transformed to hourly max energy consumption based on each month’s overall consumption
and a particular amortization formula. Consequently, the energy will not be equally shared in every
hour of the year, since there is a different energy consumption pattern per month. Therefore, there will
be a difference between the available hourly energy consumption for each month. The amortization
plans, e.g., the Linear Amortization formula, provide upper bounds (constraints the max energy
consumption) that can be consumed hourly at each month, but it does not set the actual energy that
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will be consumed. The latter is the GP algorithm’s responsibility to decide how much energy will
be consumed, which should be less than the maximum budget set by the amortization formulas.
By satisfying the constraint (that is, not consuming more energy hourly than the max calculated
by the amortization formulas) will consequently guarantee that the monthly energy consumption
and consequently the yearly energy consumption will be less than the real consumption patterns of
Table 5.

4.2 Amortization Plan (AP) Algorithm
The 𝐴𝑃 () subroutine is initially executed for calculating the energy budget constraint 𝐸𝑝 subject to a
monthly residence Energy Consumption Profile 𝐸𝐶𝑃 , such as the one exemplified in Table 5 for a flat.
The hourly energy budget constraint is referring to the maximum upper bounds per hour, therefore
it doesn’t necessarily mean that for every hour we will be using the entire available budget. The
AP() is responsible to set the hourly upper consumption bounds (hourly energy budget constraint),
and later the GP() will handle the actual hourly energy allocation. Moreover, the AP() algorithm
brought forward in this work does not simply translate kWh to CO2 emissions, but rather uses a
weather dataset along with heuristics to make consumption as clean as possible. There are several
amortization strategies that can be used, such as the following:

(i) Linear Amortization Formula (LAF): In this case, the total energy consumption 𝑇𝐸 can be
linearly allocated throughout a pre-specified period 𝑝 of duration time 𝑡 , which can be set as yearly,
monthly, daily, hourly and so on, giving the energy budget constraint:

𝐸𝑝 =
𝑇𝐸

𝑡
, (4)

where 𝑇𝐸 is the total energy allocated for the complete period 𝑝. In our 𝐸𝐶𝑃 example of Table 5, the
flat consumes a total energy 𝑇𝐸 = 3666 kWh yearly, on average. In this case, if an hourly energy
budget period is selected by the user, then the energy budget constraint 𝐸ℎ will be calculated as
𝐸ℎ = 3666/8928 = 0.742 kWh, for a duration 𝑡 = 12 × 31 × 24 = 8928, indicating the hourly available
budget for the whole year.

(ii) Balloon Linear Amortization Formula (BLAF): In this case, the user saves a percentage 𝜋 of
energy from total energy 𝑇𝐸 for a period of time 𝜆 < 𝑡 , the so-called balloon 𝜎 , which is used in the
remaining period 𝜆′ = 𝑡 − 𝜆 that the energy consumption is higher. The energy budget constraint 𝐸𝑝
for a period 𝑝 of duration 𝑡 is calculated as follows:

𝐸𝑝 =

{
𝑇𝐸
𝑡
− 𝜎

𝜆
, for 𝜆 period

𝑇𝐸
𝑡
+ 𝜎

𝜆
, for 𝜆′ period

,

where 𝜎 = (𝑇𝐸
𝑡
× 𝜆) × 𝜋.

(5)

In our example, if the user desires to save 𝜋 = 30% of the total energy consumption 𝑇𝐸 = 3666 kWh,
for 𝜆 = 7 months (e.g., for April to October) that the consumption is lower than the remaining 𝜆′ = 5
months (i.e., November to March) then 𝜎 = (305.5 × 7) × 0.3 = 641.55 kWh. Therefore, the energy
consumption for seven months, between April to October, will be 𝐸𝑝 = 397.15 and for five months,
between November to March will be 𝐸𝑝 = 213.85 kW. The corresponding hourly energy budget
constraint of this formula will be 𝐸ℎ = 397.15/(31 × 24) = 0.53kWh and 𝐸ℎ = 213.85/(31 × 24) =
0.28kWh, accordingly.

(iii) 𝐸𝐶𝑃-based Amortization Formula (EAF): In this case, a set of weights is calculated using the
Energy Consumption Profile 𝐸𝐶𝑃 vector (e.g., see Table 5). The weights are then used to define the
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Fig. 2. Example execution of the IMCF+ framework Planner.

energy budget constraints for a user-defined period over an available energy budget 𝐸:

𝐸𝑝 = { 𝑤𝑖 × 𝐸
𝑡/|𝐸𝐶𝑃 | }, 𝑓 𝑜𝑟 𝑖 = 1, . . . , |𝐸𝐶𝑃 |,

where 𝑤𝑖 =
𝑇𝐸

𝐸𝐶𝑃𝑖
and

|𝐸𝐶𝑃 |∑
𝑖=1

𝑤𝑖 = 1,
(6)

𝑇𝐸 is the total energy consumption derived from the 𝐸𝐶𝑃 , 𝐸 is the user-specified available energy
budget, |𝐸𝐶𝑃 | is the size of the Energy Consumption Profile vector and 𝑡/|𝐸𝐶𝑃 | normalizes the energy
budget based on the time granularity duration 𝑡 . Clearly, 𝑡 could have taken a different granularity
(e.g., day, hour or even minute), given that this information is typically available in energy monitoring
systems. For example, let’s assume an hourly energy budget period and an available yearly budget
𝐸 = 3500 kWh selected by a user of a flat with an 𝐸𝐶𝑃 indicated in the left column of Table 5. The
total energy consumption derived from the 𝐸𝐶𝑃 set is 𝑇𝐸 = 3666 kWh and |𝐸𝐶𝑃 | = 12. Therefore
𝑤1 = 0.211,𝑤2 = 0.144, and so on until 𝑤12 = 0.115. The hourly energy consumption per month can
be calculated as {𝑤𝑖×3500

31×24 }. In all cases, the max CO2 emission Γ𝑝 is calculated as:

Γ𝑝 = 𝐸𝑝 × 𝛾
and the constraint 𝐹Γ is directly calculated using Equation 3.

Table 5. Energy Consumption Profile (ECP) of a Flat

Months kWh per month kWh per day kg CO2 (EU-27) kg CO2 (USA)
January 775.50 25.0 7.40 11.23
February 528.75 17.06 5.05 7.66
March 246.75 7.96 2.36 3.57
April 141.00 4.55 1.35 2.04
May 176.25 5.69 1.68 2.55
June 211.50 6.82 2.02 3.06
July 246.75 7.96 2.36 3.57
August 317.25 10.23 3.03 4.60
September 211.50 6.82 2.02 3.06
October 176.25 5.69 1.68 2.55
November 211.50 6.82 2.02 3.06
December 423.00 13.65 4.04 6.13

Total 3666.00 - - -
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4.3 Green Plan (GP) Algorithm
In this subsection, we discuss our green planner algorithm and its related components and parameters.

Solution Representation: A green plan solution is a vector 𝑠 =< 𝑠1, . . . , 𝑠𝑁 > of size 𝑁 = |𝑀𝑅𝑇 |. A
vector component 𝑠𝑖 represents a meta-rule in table 𝑀𝑅𝑇 , where 𝑠𝑖 = 0 means ignoring meta-rule at
position 𝑖 of table 𝑀𝑅𝑇 and 𝑠𝑖 = 1 means adopting meta-rule at position 𝑖.

Initialization: At the beginning, an initial solution 𝑠∗ is developed in line 8 that will specify the
initial state of the algorithm. An initial solution can be generated randomly or deterministically. In
the latter, a deterministic solution for the 𝐺𝑃 can be to set all vector components to 1, meaning that
all meta-rules will be greedily triggered, favoring in this way the comfort error objective, but having
a high probability of violating the Γ𝑝 constraint. In the case of a random initialization, the values of
all vector components are uniformly randomly selected.

Optimization: For the optimization step, a simulated annealing heuristic is utilized to transform the
current state’s solution 𝑠∗ to a new state’s solution 𝑠 by uniformly randomly selecting and swapping
up to 𝑘 components of 𝑠∗. The probability of making the transition from the current state 𝑠∗ to a
candidate new state 𝑠 is specified by an acceptance probability function 𝑃 (𝑒 (𝑠∗), 𝑒 (𝑠),𝑇 ), where 𝑒 (𝑠∗)
and 𝑒 (𝑠) is the energy (or fitness evaluation) of the solutions generate in states 𝑠∗ and 𝑠, respectively,
and 𝑇 is a global time-varying parameter, called the temperature. The temperature 𝑇 plays a crucial
role in controlling the evolution of the state 𝑠, since a large 𝑇 favors coarse variations between the
states, where a small 𝑇 favors more fine grain variations. Parameter 𝑇 can be either set through a
pre-specified annealing schedule or calculated in respect to the number of iterations passed (i.e.,
𝑇 = 𝜏+1

𝜏𝑚𝑎𝑥
). In any case, a gradual reduction of 𝑇 is required as the simulation proceeds. A transition

is always accepted when 𝑠 is better than 𝑠∗ and is probabilistically accepted, with a probability
𝑃 (𝑒 (𝑠∗), 𝑒 (𝑠),𝑇 ) when 𝑠 is worse than 𝑠∗, allowing in this way the heuristic to avoid local optima.
Here it is important to note that any heuristic or meta-heuristic approach can be utilized in the 𝐺𝑃
optimization step.

Evaluation: Each solution 𝑠 is evaluated using the performance metrics 𝐹𝐶𝐸 , 𝐹𝐸 and 𝐹Γ of Equa-
tions (1), (2) and (3) in lines 10 and 13. A solution 𝑠 is considered better and replaces the current best
solution 𝑠∗ (i.e., transition is accepted) if (𝐹𝐸 (𝑠) ≤ 𝐸𝑝 ) && (𝐹𝐶𝐸 (𝑠) < 𝐹𝐶𝐸 (𝑠∗)) && (𝐹Γ (𝑠) < 𝐹Γ (𝑠∗)).
Otherwise, if 𝑠 is worse than 𝑠∗, the transition is accepted only if a uniformly random generated value
𝑟𝑎𝑛𝑑 < 𝑃 (𝑒 (𝑠∗), 𝑒 (𝑠),𝑇 ), where 𝑟𝑎𝑛𝑑 is in the range of [0, 1].
Termination criterion: the green planner stops when 𝜏𝑚𝑎𝑥 iterations are completed. Alternatively,
the algorithm can iterate until ∄𝑠 |𝐹𝐶𝐸 (𝑠) < 𝐹𝐶𝐸 (𝑠∗). However, in the absence of any knowledge on
the optimal solution this may result in an infinite loop.

Example: Consider the simplified scenario of Fig. 2 in which a user sets four meta-rules 𝑀𝑅
𝑗

𝑖
in the

𝑀𝑅𝑇 for a four-room residence, which along with some input data from the house’s sensors as well
as some online web services (e.g., weather forecasting website) are forwarded to the 𝐼𝑀𝐶𝐹+. 𝐼𝑀𝐶𝐹+

initially runs the amortization plan subroutine using a pre-selected amortization formula as well as
the 𝐸𝐶𝑃 to calculate an energy budget constraint 𝐸𝑝 and consequently a CO2 emission constraint Γ𝑝 .
Then it converts the 𝑀𝑅𝑇 to a binary vector, in which each index of the vector represents a meta-rule
in the 𝑀𝑅𝑇 . A random initialization process generates the first solution 𝑠∗ =< 1, 0, 0, 1 >, which
means that meta-rules 1 and 4 will be triggered and meta-rules 2 and 3 will be ignored. Solution
𝑠∗ is evaluated using the performance metrics 𝐹𝐶𝐸 , 𝐹𝐸 and 𝐹Γ of Equations (1), (2) and (3). During
the optimization, 𝑘 = 2 vector components are modified using a uniform random generator. In this
example, the value of vector component 2 is swapped from 0 to 1 and the value of component 4
is swapped from 1 to 0. The newly generated solution 𝑠 =< 1, 1, 0, 0 > is again evaluated using
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Algorithm 1 IMCF+: generates a green plan

Input: 𝑀𝑅𝑇 : Meta-Rule Table; 𝑘: components to be modified; 𝜏𝑚𝑎𝑥 : max iterations; 𝑡 : time
granularity; 𝑎𝑝𝑙 : amortization plan; 𝐸𝐶𝑃 : Energy Consumption Profile; 𝑇 :Temperature
Output: An green plan solution 𝑠∗ = (𝑠1, . . . , 𝑠𝑁 )

1: AP(𝑎𝑝𝑙, 𝑝, 𝐸𝐶𝑃) ⊲ Amortization Plan Routine
2: switch (𝑎𝑝𝑙)
3: a: 𝐸𝑝 ← 𝐿𝐴𝐹 (𝑡, 𝐸𝐶𝑃) ⊲ use linear Eq. (4)
4: b: 𝐸𝑝 ← 𝐵𝐿𝐴𝐹 (𝑡, 𝐸𝐶𝑃) ⊲ use balloon Eq. (5)
5: c: 𝐸𝑝 ← 𝐸𝐴𝐹 (𝑡, 𝐸𝐶𝑃) ⊲ use 𝐸𝐶𝑃-based Eq. (6)
6: return Γ𝑝 = 𝐸𝑝 × 𝛾 ⊲ max CO2 emission for 𝛾 CO2 emission intensity
7:
8: GP(𝑀𝑅𝑇, 𝑘, 𝜏𝑚𝑎𝑥 , 𝑖, Γ𝑝 ) ⊲ Green Plan Routine
9: 𝑠∗ ← 𝑖𝑛𝑖𝑡𝑖 (𝑀𝑅𝑇 ) ⊲ 𝑠∗: initial solution for time i

10: (𝐹𝐶𝐸, 𝐹𝐸, 𝐹Γ)← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑠∗) ⊲ with Equations (1),(2),(3)
11: While 𝜏 < 𝜏𝑚𝑎𝑥 do ⊲ 𝜏 : current iteration
12: 𝑠 ← 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑠∗) ⊲ randomly select 𝑘 positions and swap their binary value
13: (𝐹𝐶𝐸, 𝐹𝐸, 𝐹Γ)← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 (𝑠) ⊲ with Equations (1),(2),(3)
14: If (𝐹𝐸 (𝑠) ≤ 𝐸𝑝 ) && (𝐹𝐶𝐸 (𝑠) < 𝐹𝐶𝐸 (𝑠∗)) && (𝐹Γ (𝑠) < Γ𝑝 ) then
15: 𝑠∗ ← 𝑠 ⊲ Set 𝑠 as the current solution 𝑠∗

16: Else If 𝑟𝑎𝑛𝑑 (0, 1) ≤ 𝑃 (𝐹𝐶𝐸 (𝑠∗), 𝐹𝐶𝐸 (𝑠),𝑇 ) && (𝐹𝐶𝐸 (𝑠) < 𝐹𝐶𝐸 (𝑠∗)) && (𝐹Γ (𝑠) < Γ𝑝 ) then
17: 𝑠∗ ← 𝑠 ⊲ Set 𝑠 as the current solution 𝑠∗

18: EndIf
19: 𝜏 + + ⊲ Increase iterations
20: EndWhile
21: return 𝑠∗ ⊲ Return the final green plan solution
22:
23: Γ𝑝 ← 𝐴𝑃 (𝑎𝑝𝑙, 𝑡, 𝐸𝐶𝑃);
24: return (∀𝑡𝑖 𝐺𝑃 (𝑀𝑅𝑇, 𝑘, 𝜏𝑚𝑎𝑥 , 𝑖, Γ𝑝 ))

Equations (1), (2) and (3) and compared with the current best solution 𝑠∗. At each iteration, when
𝑠 is better than 𝑠∗ then 𝑠 becomes the 𝑠∗, otherwise of 𝑠 is worse than 𝑠∗ then a uniformly random
generator picks and returns a value 𝑟𝑎𝑛𝑑 in the range [0, 1] and if 𝑟𝑎𝑛𝑑 ≤ 𝑃 (𝐹𝐶𝐸 (𝑠∗), 𝐹𝐶𝐸 (𝑠),𝑇 ) then
𝑠 becomes 𝑠∗. The algorithm stops when the termination criterion is met.

4.4 Performance Analysis
We analytically derive the performance of 𝐼𝑀𝐶𝐹+ with respect to the estimated comfort error𝐶𝐸 and
CO2 emission Γ. We adopt a worst-case analysis as it provides a bound for all input. Our experimental
evaluation in Section 6, shows that under realistic and real datasets our approach performs more
efficiently than the projected worst case. The analysis is based on our system model and ignores any
energy not directly associated with the meta-rules table 𝑀𝑅𝑇 .

Lemma 1. Our IMCF+ approach has a comfort error of 𝐹𝐶𝐸 = 1
𝑛

𝐷∑
𝑖=1

∑
𝑗

𝑐𝑒 𝑗 (𝑀𝑅𝑖 ), 𝑖 = 1, . . . , 𝑛, where

𝑛 > 0 is the number of meta-rules that will be executed.

Proof. The green planner will select at least 𝑛 > 0 meta-rules to be executed satisfying in this way
the energy budget constraint. In the worst case scenario and for an energy budget equal to zero,
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IMCF+ will act as the 𝑁𝑅 approach providing 𝐹𝐶𝐸 = 1. On the other hand, the 𝑀𝑅 approach by
greedily executing all meta-rules in the 𝑀𝑅𝑇 will offer an 𝐹𝐶𝐸 = 0.

Lemma 2. Our IMCF+ approach has a CO2 emission of 𝐹Γ = 1
𝑛

𝐷∑
𝑖=1

∑
𝑗

Γ𝑗 (𝐸 𝑗 (𝑀𝑅𝑖 ), 𝛾), 𝑖 = 1, . . . , 𝑛,

where 𝑛 ≤ 𝑁 is the number of meta-rules that will be executed.

Proof. The green planner will select at most 𝑛 ≤ 𝑁 meta-rules to be executed satisfying in this way
the CO2 emissions constraint. In the worst case scenario and by ignoring the constraint, IMCF+ will
act as the 𝑀𝑅 approach providing 𝐹Γ = 1. On the other hand, the 𝑁𝑅 approach by not executing any
meta-rule of the 𝑀𝑅𝑇 will offer an 𝐹Γ = 0.

5 THE IMCF+ SYSTEM ARCHITECTURE
In this section, we describe an integrated system we have developed for IMCF+ using the open
Home Automation Bus (OpenHAB) 5, the Linux crontab daemon, as well as the Laravel PHP web
framework following the model–view–controller architectural pattern. We start out with a discussion
of the system architecture and then describe the Graphical User Interface we have developed that
integrates directly into OpenHAB’s mobile and web Panel view for both interactive management of
IoT and automated management of Energy-aware & CO2-aware MRT rule pipelines using the Green
Planner (GP) described in this work.

5.1 System Architecture
Our system architecture comprises of the following components: (i) a full-fledge local controller
implemented inside the openHAB stack, which is a smart home management software; and (ii)
IMCF+, which is the software system that encapsulates the complete application logic of the energy
management stack we propose in this work along with the respective user interfaces.

Local Controller (LC): is a java-based system installed on a micro device, like a Linux Raspberry
PI, running on the local network of a user. The LC will be in direct communication with the IoT
devices (i.e., Things (TG)) to instruct them based on the preferences registered by a user (see Fig. 3).
A user will typically download the openHAB smartphone application (APP), for iOS or Android,
and interact with TG through LC. For the implementation of LC we decided to extend the openHAB
stack, which is a vendor and technology agnostic open source automation software for smart home
that provides a rich ecosystem of bridges through which a user can interact directly with IoT devices
(e.g., Daikin Smart A/C, Phillips HUE lights) both locally and remotely. This gives us the benefit to
achieve maximum IoT market compatibility as the integration of IoT is always an immense challenge.

The IMCF+ system is protected by the authentication provided by openHAB and Laravel frame-
work. The LC is also located on the user’s local network and is protected by the Ubuntu operating
system firewall. Therefore, the system is quite secure, as someone with malicious intent will have to
break through the security offered by openHAB and Laravel to be able to infect files or penetrate the
firewall.

To realize the operation of LC, consider for example a user inside his smart space that selects
through an APP to increase the temperature of an A/C from 21 to 25 degrees Celsius (see Figure 4a-b).
This manual interaction goes to LC that communicates this directly to TG (on older units this is
typically unencrypted http communication channels, either http query string or in some cases JSON
web 2.0 interactions). When a user’s APP is outside a smart space, the network firewall and Network
Address Translation (NAT) will obviously not let this user interact with LC. As such, the user’s APP

5OpenHAB, https://openhab.org
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Fig. 3. Overview of the IMCF+ System Implementation.

connects to the Cloud Controller (CC), which is a server on the public Internet that communicates
and controls LC remotely.

The complete picture can tentatively be complemented by a Cloud Meta-Controller (CMC), like
IFTTT, which can enable the user to configure and run various custom rules. CMC would in this
case interact with CC that would in turn interact with LC that would eventually interact with TG, all
under the manual control of the user APP.

All above clearly do not enable the adaptation of comfort preferences to meet the long-term
energy planning targets of individuals or group of individuals as we do in this work (see examples
in Section 1) and describe technically next. In the future, we also plan to investigate the so called
IMCF+-Cloud extensions that will enable IMCF+ to operate as a CMC controller in the cloud.
The IMCF+ Component is a software extension to LC we have implemented that encapsulates the
implementation of the Green Planner (GP) algorithm but also the Graphical User Interfaces (GUI)
and storage necessary to allow the user to interact with the system. The GP algorithm is implemented
as a JAVA library which takes the user configurations from a local MariaDB persistency layer. The
storage layer is populated by the user using the APP, which has been configured in a way to integrate
seamlessly the MRT rule definition process through a web-based GUI (see Figure 4c,d). The GUI
code is written in the Laravel PHP web framework following the model–view–controller architectural
pattern as well as JavaScript and HTML. Our complete code is approximately 2500 lines-of-code
(LOC) plus 3000 LOC going to the GUI.

For the GUI code execution, we rely directly on the NGINX web web-server available on Raspberry
PI, while for the IMCF+ GP library we invoke the cron job daemon that reliably executes the Green
Planning every few minutes. In case devices have to be turned on or off, the IMCF+ system has the
following options in our system:

• Binding-mode, where IMCF+ exploits the rich ecosystem of bridges available on the openHAB
open source project to interact with local devices. We use this as the default mode, as it allows
our platform to scale to a very wide spectrum of IoT devices.
Example 6:
daikin.things: daikin:ac_unit:living_room_ac [ host="192.168.0.5" ]

daikin.items: Switch DaikinACUnit_Power

channel = "daikin:ac_unit:living_room_ac:power"

Number:Temperature DaikinACUnit_SetPoint

channel = "daikin:ac_unit:living_room_ac:settemp"

6OpenHAB Daikin Binding. https://www.openhab.org/addons/bindings/daikin/
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Fig. 4. IMCF+ Graphical User Interface: Integration of the IMCF+ Software Library in the openHAB
Home Automation Stack. From left to right: a) Interactive and Automated Menu; b) Dashboard for
smart space current state; c) Meta-Rule-Table Configurator; and d) MRT data entry form.

• Extended mode, where IMCF+ implements locally the custom instructions for enabling and
disabling the various TG devices in the smart space of a user. An example of this mode is the
following command:
Example: Setting Daikin in Cool Mode 25 degrees 7.
http://192.168.0.5/aircon/set_control_info?

pow=1&mode=3&stemp=25&shum=0

Given that many of the IoT communications are unencrypted, this can easily be captured
by deep packet analyzers like Wireshark. Additionally, to avoid any additional CMC, CC
or LC interactions with the Daikin TG, we also configure the LC network firewall with the
iptables command to disable TCP flows to designated TG devices on the local network. In
this case, IMCF+ works as a real network firewall by blocking all outgoing traffic from LC to
TG.
Example:
iptables -A OUTPUT -s 192.168.0.5 -j DROP

5.2 Graphical User Interface (GUI)
Our prototype GUI provides all the functionalities for a user participating in IMCF+. The GUI is
divided into a Meta-Rules Table interface and the OpenHAB Rules Table, respectively as shown
in Figure 4d. The Meta-Rules interface prompts users to define kWh preferred limit, temperature
and light values for any configured time slots. The OpenHAB Rules Table records are retrieved
through the OpenHAB Rest API system consisted of smart device sensor measurements installed and
pre-configured in a building. These rule combinations are used by the AI Green Planner algorithm to
satisfy the user needs keeping the balance between comfort and energy consumption.

At a high level, our GUI enables the following functions: (i) record OpenHAB item measure-
ments/values on local storage and present those on a table; (ii) configure various meta-rules in regards
of kWh limit, temperature and light values; and (iii) operate IMCF+ framework and get an efficient
execution considering user satisfaction along with balanced comfort error and energy consumption.

7Daikin Control. https://github.com/ael-code/daikin-control
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Fig. 5. Histograms of Light-Level & Temperature of the apartment dataset, and the outdoors Tempera-
ture retrieved from the OpenWeather forecast dataset.

6 EXPERIMENTAL METHODOLOGY & EVALUATION
This section presents an experimental evaluation of our proposed framework. We start-out with the
experimental methodology and setup in Subsection 6.1, followed by various evaluation studies in
different smart environments in Subsection 6.2, and finally a number of experiments that expose the
core benefits of our IMCF+ framework and its internal GP algorithm compared to baseline techniques.
The experimentation was conducted based on a micro-benchmarking study for parameters of the GP
algorithm and concludes with an Energy Conservation Study as defined in Subsection 6.3.

6.1 Methodology
This section provides details regarding the algorithms, metrics and datasets used for evaluating the
performance of the proposed approach.

Datasets: We have adopted a trace-driven experimental methodology in which real datasets are fed
into our simulator executed on the testbed. This allows repeatable execution of workloads under
different control parameters. Our evaluation is carried out on an Ubuntu 18.04 VMWare server image,
featuring 8GB of RAM with 2 virtual CPUs (@ 2.40GHz). The image utilizes fast local 10K RPM
RAID-5 LSILogic SCSI disks, formatted with VMFS 6 (1MB block size). We utilize anonymized
measurements from a real residential apartment that comprises of a variety of sensors, sub-meters
and approximately 5,668,878 readings (1.09 GB in total). Our real datasets of residential data are
collected by the “Center for Advanced Studies in Adaptive Systems” (CASAS) [51] at Washington
State University in the School of Electrical Engineering and Computer Science. CASAS serves to
meet research needs around testing of the technologies using real data through the use of a smart
homes environment located on the WSU Pullman campus. The real weather forecast dataset was
acquired using Weather API on the OpenWeatherMap website and contains ∼ 5 years (2012-2017)
of high temporal resolution data based on hourly measurements of various weather attributes, such
as temperature, humidity, air pressure, weather description, wind direction and speed (see Figure 5).
• Temperature Dataset: The 700 MB dataset contains 3,555,238 readings on a second basis

between October 2013 and December 2016. The readings, which are recorded at a residential
apartment of a volunteer adult, include temperature and door/window sensor measurements.
• Light Dataset: The 416 MB dataset contains 2,113,640 readings on a second basis between

October 2013 and December 2016. The readings, which are recorded at a residential apartment
of a volunteer adult, include light measurements.
• Weather Forecast Dataset: The 71,23 MB dataset contains 271,561 readings on an hourly

basis between October 2012 and November 2017. The historical weather data is available for
30 US and Canadian Cities, as well as 6 Israeli cities, including temperature, humidity, air
pressure, weather description, wind direction and speed.
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Table 6. Meta-rule Table (MRT) & IFTTT Configurations for Flat Experiments

Description Time/Duration Action Value
Night Heat 01:00 - 07:00 Set Temper. 25
Morning Lights 04:00 - 09:00 Set Light 40
Day Heat 08:00 - 16:00 Set Temper. 22
Midday Lights 10:00 - 17:00 Set Light 30
Afternoon Preheat 17:00 - 24:00 Set Temper. 24
Cosmetic Lights 18:00 - 24:00 Set Light 40
Energy Flat for three years Set kWh Limit 11000
Energy House for three years Set kWh Limit 25500
Energy Dorms for three years Set kWh Limit 480000

IF THIS THEN THAT
Season Summer Set Temper. 25
Season Winter Set Temper. 20
Weather Sunny Set Temper. 20
Weather Cloudy Set Temper. 22
Weather Sunny Set Light 0
Weather Cloudy Set Light 40
Temperature >30 Set Temper. 23
Temperature <10 Set Temper. 24
Light Level >15 Set Light 9
Door Open Set Light 0

To evaluate the scalability of our propositions for residential buildings of various scales, we have
generated three realistic datasets by replicating the above onto various building sizes. The resulting
datasets are the following:

• Flat Dataset: A single user flat/apartment dataset consisted of one bedroom, a bathroom and a
kitchen. The apartment has a single split unit to warm/cool an area size of 50𝑚2. It has a size
of 1.09 GB.
• House Dataset: A residential house dataset generated by replicating, mixing up the readings

and multiplying the real dataset by the factor of four. It has three bedrooms and four split units
used by four residents. The area size is approximately 200𝑚2. It has a size of 4.50 GBs.
• Dorms Dataset: A University Campus dataset (dorms) generated synthetically from the

bootstrap datasets. We have generated 50 dorm apartments consisting of two bedrooms (10 𝑚2

/ room) with a shared bathroom, a kitchen and two split units. The total area size of the dorms
is approximately 2000𝑚2 and has a size of 20 GBs.

Metrics: Our cost metrics are Energy Consumption (𝐹𝐸), CO2 Emission (𝐹Γ) and Comfort Error
(𝐹𝐶𝐸) as defined in Section 3 as well as CPU Time (𝐹𝑇 ) for the comparison in the performance study.
The CPU Time (𝐹𝑇 ) is the processing time required by the controller for running the optimization
function and calculating the output for all meta-rules. The mean and standard deviation of the results
is shown with error bars in all experimental studies that follow, based on ten repetitions.
Algorithms: Here we provide a concise overview of the compared methods and algorithms consider-
ing the MRT Table 6, which is inspired from real preferences recorded by users.

• No-Rule (NR): this method ignores all rules in the Meta-Rule-Table (see Table 6 used in the
flat dataset, the rest use uniformly random variations of the same table). 𝐹𝐸 is obviously always
0 since no IoT device is turned on. On the other hand 𝐹𝐶𝐸 is measured as a percentage of
comfort a user will had he executed all rules (Def. 3.1) and (𝐹𝑇 ) is only the cost of doing the
simulation.
• If-This-Then-That (IFTTT): this executes the IFTTT preferences (see Table 6) used in the

flat dataset. The dataset was collected from the official IFTTT website. For the evaluation we
measure 𝐹𝐶𝐸 , i.e., percentage of comfort a user will get from executing the IFTTT rules against
all rules (recorded in the MRT table).
• Meta-Rule (MR) method: this method executes all rules in the Meta-Rule-Table (again, see

Table 6 used in the flat dataset, the rest use uniformly random variations of the same table). 𝐹𝐸
is obviously maximum here and 𝐹𝐶𝐸 is minimum as IoT devices will operate maximally.
• Green Planner (GP) algorithm: this is the algorithm we propose in Section 4. For the

construction of the GP algorithm we have set the number of rules activation/deactivation in
each iteration (k), a savings percentage amount (s), and the number of iterations (𝜏𝑚𝑎𝑥 ) and
detailed evaluation follows for these parameters in sub-sections 6.3.2 and 6.3.3.
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Evaluation Plan: We split our experimental evaluation into two basic series: (i) Evaluation Studies
in Section 6.2, during which we carry out an evaluation in a variety of environments using a pre-
configured instance of our GP algorithm according to the parameters we identify in the subsequent
micro-benchmarking section; (ii) Micro-benchmarking Study in 6.3, during which we carry out a
detailed evaluation of all parameters according to the following table:

Table 7. Micro-benchmark Study Configuration Table

Section Name k s 𝜏𝑚𝑎𝑥 Initialization
6.3.1 Performance Evaluation 4 0% 15 random
6.3.2 k-opt Evaluation 2, 3 , 4 0% 15 random
6.3.3 Initialization Evaluation 4 0% 15 all-1s, random, all-0s
6.3.4 Energy Conservation Study 4 0% - 40% 15 random

6.2 IMCF+ Evaluation Studies
In this section we carry out an extensive evaluation study in various smart environments equipped
with net-metering photovoltaic systems. Particularly, we examine IMCF+ in scenarios such as a
household, university campus, and hotel apartments, using different time frames and rules as well as
diverse number of users. Note that the financial benefit of using our Green Planner is not significant
in a net-metering system, however the environmental impact is very significant.

Fig. 6. Household Evaluation Study

6.2.1 Household Evaluation Study. For this experimental series, we deployed an instance of
our real system for a family of three persons for one week (see Fig. 6). Particularly, we allowed
each person to configure their personal preferences using the Mobile APP that interacts with an
IMCF+-LC node on a Linux VM on our datacenter described earlier. Particularly, each individual
resident entered approximately three different meta-rules according to their personal preferences.
The weekly energy consumption (kWh) limit was set by one of the residents to 165 kWh. This results
in configuration data of approximately 65 bytes / user stored in the MariaDB persistency layer. To
measure the environmental parameters (i.e., temperature, light) we use data from the open weather
API. We measure again the performance of the proposed GP framework in regard to 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸 .
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Table 8. Evaluating the Household system with respect to 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸

MR algorithm GP algorithm
Time Duration Week Week
Energy Consumption (𝐹𝐸 ) 210.85 kWh 132.15 kWh
Comfort Error (𝐹𝐶𝐸 ) 0 % 3.45 %
kg CO2 Emission (𝐹Γ) 84,15 kg CO2 50.79 kg CO2
Energy Consumption (𝐹𝐸 ) with CO2 emissions 185.0 kWh 114.85 kWh
Energy Consumption (𝐹𝐸 ) without CO2 emissions 25.85 kWh 17.3 kWh

Table 9. Individual Resident Comfort Error (𝐹𝐶𝐸 )

Users Comfort Error (𝐹𝐶𝐸 )
Father 1.2806%
Mother 1.1500%
Daughter 1.0234%

The 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸 results for our evaluation using real Weather Forecast data are summarized in
Table 8. In respect to 𝐹𝐶𝐸 , our observation is that GP is indeed an efficient approach for retrieving
great user satisfaction, as it performs in 4 seconds on average with an Average Comfort Error ≈3.45%.
Table 9 demonstrates for each individual resident their own Average Comfort Error values in respect
with their configured meta-rules, showing both a consistent and high satisfaction close to 98.9% for
all residents. The system behaves correspondingly to what we observed in the simulations, therefore
the 𝐹𝐸 ≈130.64 kWh is within the preferred budget limit as pre-configured by the user, and with a
reasonable 𝐹Γ ≈50.79 kg CO2. This is approximately a one-way flight trip from Paris to Frankfurt,
since according to the figures in Table 2 from the German non-profit organization called "Atmosfair",
a flight from Paris to Frankfurt and back generates about 115 kg of CO2 per passenger. As presented
in the results section, the kilograms of carbon dioxide emissions reduction while using the GP
algorithm is ≈59% (33 kg CO2) less than the MR algorithm.

Fig. 7. University Campus Evaluation Study

6.2.2 University Campus Evaluation Study. In view of this experimental series, we have simu-
lated our system at the University of Cyprus for the timespan of a year using the kg/CO2 readings
of Cyprus (see Table 1). The campus consists of ten hall blocks, a sports center, laundry stations, a
library, a parking lot, a restaurant and the accommodation service office (see Fig. 7). The administra-
tion officer configured approximately twenty-five meta-rules/preferences for the entire university
campus through the Mobile APP directly interacting with the IMCF+ Local Controller node located
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Table 10. Evaluating the University Campus system with respect to 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸

MR algorithm GP algorithm
Time Duration Year Year
Energy Consumption (𝐹𝐸 ) 652,641 kWh 414,548 kWh
Comfort Error (𝐹𝐶𝐸 ) 0 % 3.20 %
kg CO2 Emission (𝐹Γ) 355,719.50 kg CO2 166,956.03 kg CO2
Energy Consumption (𝐹𝐸 ) with CO2 emissions 580,655.40 kWh 368,832.85 kWh
Energy Consumption (𝐹𝐸 ) without CO2 emissions 71,985.60 kWh 45,715.15 kWh

on our datacenter. The administration officer is responsible to manage and act as a core to the setting
system considering the smooth functionality of all the campus premises. Additionally, the moderator
has the privilege to monitor the state and mode of the IoT devices though the GUI console. The
annual energy consumption (kWh) limit was set to 500,000 kWh. Similarly, to the previous case,
data from the Open Weather API have been used for the environmental parameters (i.e., temperature,
light) measurement, thus the GP framework strictly considers the performance of the 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸
respectively.

Table 10 summarizes the 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸 results for our university campus evaluation study. In
respect to 𝐹𝐶𝐸 , our observation is that GP behaves proficiently while retrieving a great satisfaction,
as it performs with an Average Comfort Error ≈3.20%. This indicates that the more rules are
configured to the system, the better results are produced by the proposed framework. The algorithm
acts correspondingly to what we observed in the simulations, therefore the 𝐹𝐸 ≈414,548 kWh is
within the preferred budget limit as pre-configured by the administration officer, and also with a
reasonable 𝐹Γ ≈166,956.03 kg CO2. This is approximately fifty-three return flight trips from London
to Perth, since according to the figures of Table 2 from "Atmosfair", flying from London to Perth and
back generates about 3,153 kg of CO2 per passenger. As the results clearly present, the kilograms of
carbon dioxide emissions reduction while using the GP algorithm is ≈47% (188,763 kg CO2) less
than the MR algorithm.

Fig. 8. Hotel Apartments Evaluation Study

6.2.3 Hotel Apartments Evaluation Study. In the final experimental series, we have deployed
an instance of our framework for a hotel’s apartments under an annual operation. The hotel consists
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of approximately 50 apartments, each one with its own kitchen, a bathroom, a living room, one-three
bedrooms and a balcony (see Fig. 8). For each apartment tenants were prompted to set up their
personal meta-rule preferences through a smart mobile device. In contrast with the previous cases,
each tenant had the privilege to configure its rented apartment’s smart devices in regard to temperature
and light level, but only the hotel’s administrative landlord could exclusively configure the annual
energy consumption (kWh) limit for all hotel apartments, which in this case was set to 375,000 kWh.
All the users can log into the IMCF+ platform and observe their personal comfort level. Moreover,
Open Weather API data have been used for the measurement of the environmental parameters, and
then the GP framework was executed and evaluated upon the 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸 .

Table 11. Evaluating the Hotel Apartments system with respect to 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸

MR algorithm GP algorithm
Time Duration Year Year
Energy Consumption (𝐹𝐸 ) 509,339 kWh 322,411 kWh
Comfort Error (𝐹𝐶𝐸 ) 0 % 2.45 %
kg CO2 Emission (𝐹Γ) 271,962.35 kg CO2 126,125.29 kg CO2
Energy Consumption (𝐹𝐸 ) with CO2 emissions 452,988.50 kWh 280,902.65 kWh
Energy Consumption (𝐹𝐸 ) without CO2 emissions 56,350.50 kWh 41,508.53 kWh

Table 11 summarizes the 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸 results for our hotel apartments evaluation study. In
respect to 𝐹𝐶𝐸 , our observation is that GP operates effectively as it performs with an Average Comfort
Error ≈2.45%, showing an excellent satisfaction level for the entire group of users. The framework
behaves accordingly to what we observed in the simulations, therefore the 𝐹𝐸 ≈322,411 kWh is
within the preferred budget limit as pre-configured by the hotel’s administrative landlord, and also
with a reasonable 𝐹Γ ≈126,125.29 kg CO2. This is approximately as forty-nine return flight trips
from Perth to Athens, since according to the figures in Table 2 from "Atmosfair", flying from Perth
to Athens and back generates about 2,530 kg of CO2 per passenger. As clearly demonstrated in the
results section, the kilograms of carbon dioxide emissions reduction while using the GP algorithm is
≈45% (145,837 kg CO2) less than the MR algorithm.

6.3 Micro-benchmarking Series
In this section, we carry out an extensive micro-benchmarking study for various parameters. Par-
ticularly, we examine the number of rules activation/deactivation in each iteration (k), the savings
percentage amount (s), different initialization methods, and the number of iterations (𝜏𝑚𝑎𝑥 ) as it is
summarized in Table 7. This study guided us to tune and select the right combination of configuration
settings for the optimal operation of the GP algorithm.

6.3.1 Series-1: Performance Evaluation. In this experimental series, we evaluate the perfor-
mance of the proposed GP framework against all algorithms over all datasets introduced, with respect
to 𝐹𝐸 , 𝐹Γ and 𝐹𝐶𝐸 . Figure 9 demonstrates the trade-off between the Energy Consumption, the Comfort
Error, the CO2 Emission, and the CPU Execution Time between all approaches. The NR approach
obtained the worst 𝐹𝐶𝐸 = 62%-72% of the whole dataset, and the best 𝐹𝐸 = 0 kWh along with the best
𝐹Γ = 0 kg CO2. The GP algorithm obtained a reasonable 𝐹𝐶𝐸 around 6.5%-8%, the second lowest 𝐹𝐸
and the less CO2 Emission intensity. The IFTTT & MR algorithms are greedy in regards of Energy
Consumption, thus their kWh consumed and CO2 Emissions are very high. The main difference
between the two is that IFTTT has 𝐹𝐶𝐸 = 26% in the residential flat case, 𝐹𝐶𝐸 = 29% in the case of a
house, and 𝐹𝐶𝐸 = 39% in the dorms case, while the MR satisfies all the meta-rules, thus its 𝐹𝐶𝐸 is
0%, which is the best possible obtained.
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Fig. 9. Performance Evaluation: Evaluation in terms of the Comfort Error (𝐹𝐶𝐸 ), the Energy Consump-
tion (𝐹𝐸 ), the CO2 Emission (𝐹Γ) and the CPU Execution Time (𝐹𝑇 ) in all datasets.

Table 12. The GP algorithm has been applied across different countries demonstrating the CO2
emission intensity (kg CO2 per kWh) based on a house scenario with an approximate Energy
Consumption of ≈22300 kWh.

COUNTRY kg CO2 per kWh
Sweden 255.35
Lithuania 351.76
France 1143.53
Austria 1474.27
Latvia 1920.60
Finland 2349.90
Slovakia 2805.54
Denmark 3248.08
Belgium 3690.77

COUNTRY kg CO2 per kWh
Croatia 4148.76
Luxembourg 4590.48
Slovenia 5015.88
Italy 5125.36
Hungary 5300.80
Spain 5349.64
Romania 6578.41
Portugal 6800.32
Ireland 7500.01

COUNTRY kg CO2 per kWh
Germany 8214.16
Bulgaria 8951.33
Netherlands 9959.84
Czech Republic 10750.20
Greece 11562.38
Malta 12064.89
Cyprus 12905.67
Poland 13559.11
Estonia 15200.73

COUNTRY kg CO2 per kWh
EU-27 (average) 5651.82
USA (average) 8700.15

In the residential flat case, the preferred energy budget was configured to 11000 kWh for all three
years, and the GP managed to save up to 10% of energy, which is approximately 9500 kWh, with a
reasonable 𝐹𝐶𝐸 around 6.5%-7%, and ≈3600 kg CO2 Emission. In the case of a house, the preferred
energy budget was configured to 25500 kWh for all three years, and the GP managed to achieve
approximately 22300 kWh, with a reasonable 𝐹𝐶𝐸 around 7%-7.5%, and ≈8700 kg CO2 Emission. In
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Fig. 10. k-opt Evaluation: Evaluation in terms of the Comfort Error (𝐹𝐶𝐸 ), the CO2 Emission (𝐹Γ), the
CPU Execution Time (𝐹𝑇 ) and the Energy Consumption (𝐹𝐸 ) based on the number of modified rules
(activated/deactivated), in all datasets.

dorms case, the preferred energy budget was configured to 480,000 kWh for all three years, and the
GP managed to achieve approximately 410,000 kWh, with a reasonable 𝐹𝐶𝐸 around 7.5%-8%, and
≈135,000 kg CO2 Emission. It is important to notice, that the difference between the MR and the GP
in regard to energy consumption, is relatively high and particularly ≈5,000kWh for the flat dataset,
≈10,000kWh for the house dataset, and ≈150,000kWh for the dorms dataset.

The fastest execution time (𝐹𝑇 ) was achieved by the NR method since it simply calculates the error
without applying any rules on the imported datasets. The GP algorithm is using the hill climbing
approach by searching an optimal solution for the user taking into account the preferred allowed
energy budget constraint and curbing the CO2 emissions, thus it is the most time-consuming method.
The MR greedy approach focuses only on minimizing the Comfort Error, which means executing
all meta-rules without any iterative processes or calculations, since 𝐹𝐶𝐸=0%. The GP has been also
applied across different countries around the world based on a house scenario as shown on Table 12,
demonstrating the CO2 emission intensity (kg CO2 per kWh) for each case respectively.

6.3.2 Series-2: k-opt Evaluation. In the second experiment, we evaluate the performance of the
proposed GP framework against different 𝑘s (rule modifications), with respect to Energy Consump-
tion, CPU Execution Time, CO2 Emission and the Comfort Error. Figure 10 illustrates that by using
four activation/deactivation rule modifications in each iteration we obtain the best 𝐹𝐶𝐸 with the best
possible CO2 Emission intensity. The worst 𝐹𝐶𝐸 occurred when we used two rule modifications. In
the residential flat case, the energy consumed was in every case approximately the same and around
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Fig. 11. Initialization Evaluation: Evaluation in terms of the Comfort Error (𝐹𝐶𝐸 ), the CO2 Emission
(𝐹Γ), the CPU Execution Time (𝐹𝑇 ) and the Energy Consumption (𝐹𝐸 ) based on various initialization
techniques, in all datasets.

9500 kWh. What actually made a difference was the 𝐹𝐶𝐸 , which decreased from 6.8% to 6.5% (≈3600
kg CO2) in the flat case, from 7.5% to 7.0% (≈8700 kg CO2) in the house scenario, and from 8.3%
to 8.0% (≈135,000 kg CO2) in the dorms scenario, as we increased the activation/deactivation rule
modifications in each iteration. This is due to the hill climbing approach performing bigger “jumps”
towards the local optimum at each step and thus searching the solution space more effectively. As the
number of 𝑘 rule modifications increases, the execution (𝐹𝑇 ) takes more time to complete and the
energy consumption is decreasing gradually.

6.3.3 Series-3: Initialization Evaluation. In the third experimental series, we evaluate the perfor-
mance of the proposed GP framework using different initialization strategies, with respect to Energy
Consumption, CO2 Emission, CPU Execution Time and the Comfort Error. In the first (all-1s) case,
we have initially activated and applied all rules. In the second (random) case, we have uniformly
randomly activated some rules and in the last (all-0s) case, we have initially deactivated all rules.
Figure 11 presents the 𝐹𝐶𝐸 that increases by using the “all-deactivated” (i.e., all-0s) rules strategy,
hence consuming less energy and slightly more CO2 Emission in contrast to the “all-activated” (i.e.,
all-1s) and the “random” rule strategies. In the residential flat case, starting from all-1s, moving to
random and finally to all-0s, we observe an increase on the 𝐹𝐶𝐸 from approximately 6.5% to 7.5%
and on the 𝐹Γ from ≈3600 kg CO2 to ≈3800 kg CO2, but respectively there is a decrease on the 𝐹𝐸
from approximately 9500 kWh to 8900 kWh. In the house scenario, starting from all-1s, moving to
random and finally to all-0s, we observe an increase on the 𝐹𝐶𝐸 from approximately 7.0% to 7.8%
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Fig. 12. Energy Conservation Study: Evaluation in terms of the Comfort Error (𝐹𝐶𝐸 ), the CO2 Emission
(𝐹Γ), the CPU Execution Time (𝐹𝑇 ) and the Energy Consumption (𝐹𝐸 ) based on different saving
values, in all datasets.

and on the 𝐹Γ from ≈8700 kg CO2 to ≈9000 kg CO2, but respectively there is a decrease on the
𝐹𝐸 from approximately 22300 kWh to 20500 kWh. In the dorms case, starting from all-1s, moving
to random and finally to all-0s, we observe an increase on the 𝐹𝐶𝐸 from approximately 8.0% to
8.6% and on the 𝐹Γ from ≈135,000 kg CO2 to ≈158,000 kg CO2, respectively though there is a
decrease on the 𝐹𝐸 from approximately 410,000 kWh to 400,000 kWh. This is due to the hill climbing
approach that needs to perform more iterations in the solution space to find the local optimum, and
consequently an optimal green plan, when all rules are deactivated.

6.3.4 Series-4: Energy Conservation Study. In the fourth experimental series, we evaluate the
performance of the proposed GP approach over various savings percentages, with respect to Energy
Consumption, CO2 Emission, CPU Execution Time and Comfort Error. This evaluation is inspired
by the SAVES is an inter-dormitory energy-saving competition that took place on 2014 - 2016 and
that we outlined in the introduction. SAVES aimed at delivering 8% average electricity savings in
participating dormitories.

Figure 12 shows that by increasing the potential energy savings there is a slight increase on the
𝐹𝐶𝐸 and a decrease on the 𝐹Γ clearly demonstrating the trade-off between those objectives. The
trade-off ranges between 5-40% of energy savings (that is around 1500 kWh and ≈500 kg CO2 in the
residential flat case) for 1-3% increase on the 𝐹𝐶𝐸 can be considered as a fair exchange.
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7 CONCLUSIONS AND FUTURE WORK
In this work, we propose an innovative framework, coined IoT Meta-Control Firewall (IMCF+),
which aims to bridge this gap and balance the trade-off between comfort, energy consumption and
CO2 emissions, while satisfying the RAW pipelines of users in smart environments. The IMCF+

framework incorporates an innovative Green Planner (GP) algorithm, which is an AI-inspired
algorithm that schedules energy consumption with a variety of amortization strategies. We have
implemented IMCF+ and GP as part of a complete IoT ecosystem in openHAB and our extensive
evaluation on real traces from an apartment, a house and a campus shows that we achieve a CO2
reduction of 45%-59% to satisfy the comfort of a variety of user groups with only a moderate ≈3%
in reducing their comfort levels. We also found that the execution of GP is fast and efficient, carrying
out the computation in about 6 seconds for the largest datasets. Given that our approach requires no
training data and only a primitive MRT preference profile, this can easily integrate in low end edge
smart actuations platforms, as we have demonstrated with our architecture.

In the future, we plan to investigate in further detail the interesting topic of multiple energy/green
planners representing conflicting interests for the benefit of smart communities. We also aim to
investigate the so-called IMCF-Cloud extensions that will enable IMCF+ to operate as a CMC
controller in the cloud and carry out large field studies. Moreover, the rule adaptation process
is a feature that we will consider integrating in our framework in the future. Finally, we aim to
investigate power workload identification methods for power-hungry devices (e.g., white devices,
electric vehicles, heating) and how to reschedule those workloads in a environmental friendly manner.
Expanding the scope of IMCF+ into other domains, beyond smart residences, is another interesting
generalization direction of the architecture we propose in this work that we will consider for future
work.
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